Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 467: 133689, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38335609

ABSTRACT

Biodegradable plastic bags (BPBs), meant for eco-friendly, often inadequately degrade in compost, leading to microplastic pollution. In this study, the effect of Fenton-like reaction with Fe3O4 nanoparticles (NMs) on the plastisphere microorganisms' evolution and the BPBs' aging mechanism was revealed by co-composting of food waste with BPBs for 40 days. The establishment of the Fenton-like reaction was confirmed, with the addition of Fenton-like reagent treatments resulting in an increase of 57.67% and 37.75% in H2O2 levels during the composting, compared to the control group. Moreover, the structural characterization reveals that increasing oxygen content continuously generates reactive free radicals on the surface, leading to the formation of oxidative cavities. This process results in random chain-breaking, significantly reducing molecular weights by 39.27% and 38.81%, thus showcasing a deep-seated transformation in the plastic's molecular structure. Furthermore, the microbial network suggested that the Fenton-like reaction enriched plastisphere keystone species, thus accelerating the BPBs' aging. Additionally, the Fenton-like reaction improved compost maturity and reduced greenhouse gas emissions. These results reveal the bio-chemical mechanisms of BPBs aging and random chain-breaking by the Fenton-like reaction, under alternating oxidative/anoxic conditions of composting and provide a new insight to resolve the BPBs' pollutions.


Subject(s)
Biodegradable Plastics , Composting , Iron , Refuse Disposal , Food , Hydrogen Peroxide , Free Radicals
2.
Sci Total Environ ; 904: 166488, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37611705

ABSTRACT

The black soldier fly (BSF) rearing technology has been a promising bioconversion method for food waste (FW) disposal. However, when used independently, it currently only achieves low efficiency and biomass transformation rates (BTR). This study screened and identified two strains of gut beneficial bacteria, Bacillus cereus and Bacterium YC-LK-LKJ45. The efficiency of a complex culture formulated by these strains was investigated, focusing on enhancing FW reduction and high-value biomass production during the rearing of BSF larvae. The coculture agent group (G1-10%, with two strains in 1:1 volume ratio at a 10 % dosage) exhibited higher larval yield (627.67 g·kg-1), BTR (47.90 %), FW reduction efficiency (80.67 %), and total protein and fat yield (261.99 g·kg-1and 46.24 g·kg-1) compared to the control and the monoculture agent group (which added a single gut beneficial bacteria agent, either Bacillus cereus or Bacterium YC-LK-LKJ45). The bacterial agent altered the richness and diversity of the gut microbial community of BSF, increasing the relative abundance of beneficial bacteria such as Bacillus, Oceano bacillus, and Akkermansia, while decreasing pathogenic bacteria, such as Acinetobacter and Escherichia-Shigella. Structural equation model quantification revealed that α-diversity (λ = 0.897, p < 0.001) and BTR (λ = 0.747, p < 0.001) are crucial drivers for enhancing high-value biomass during bioaugmentation rearing. This investigation provides a theoretical framework for the effective management of food waste using BSF, enhancing its decomposition and transformation into higher-value biomass.


Subject(s)
Bacillus , Diptera , Gastrointestinal Microbiome , Refuse Disposal , Animals , Food , Biomass , Diptera/microbiology , Larva/metabolism , Bacteria
3.
Sci Total Environ ; 875: 162356, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36822427

ABSTRACT

Biodegradable plastic bags (BPBs) to collect food waste and microplastics (MPs) produced from their biodegradation have received considerable scientific attention recently. Therefore, the current study was carried out to assess the co-composting efficiency of biodegradable plastic bags (polylactic acid (PLA) + polybutylene terephthalate (PBAT) + ST20 and PLA + PBAT+MD25) and food waste. The variations in greenhouse gas (GHG) emissions, microbial community and compost fertility were likewise assessed. Compared with the control, PLA + PBAT+ST20 and PLA + PBAT+MD25 both accelerated organic matter degradation and increased temperature. Moreover, PLA + PBAT+ST20 aggravated CH4 and CO2 emissions by 12.10 % and 11.01 %, respectively. PLA + PBAT+MD25 decreased CH4 and CO2 emissions by 5.50 % and 9.12 %, respectively. Meanwhile, compared with PLA + PBAT+ST20, the combined effect of plasticizer and inorganic additive in PLA + PBAT+MD25, reduced the NO3--N contents, seed germination index (GI) and compost maturity. Furthermore, adding BPBs changed the richness and diversity of the bacterial community (Firmicutes, Proteobacteria and Bacteroidetes). Likewise, redundancy analysis (RDA) showed that the co-compost system of BPBs and food waste accelerated significantly bacterial community succession from Firmicutes and Bacteroidetes at the initial stage to Proteobacteria and Actinobacteria at the mature stage, increased co-compost temperature to over 64 °C and extended thermophilic composting phase, and promoted the degradation of MPs. Additionally, according to structural equation model quantification results, the inorganic additive of PLA + PBAT+MD25 had more serious toxicity to microorganisms and had significantly adverse effects on GI through CO2-C (λ = -0.415, p < 0.05) and NO3--N (λ = -0.558, p < 0.001), thus reduced compost fertility and quality. The results also indicated that the BPBs with ST20 as an additive could be more suitable for industrial composting than the BPBs with MD25 as an additive. This study provided a vital basis for understanding the potential environmental and human health risks of the MPs' generated by the degradation of BPBs in compost.


Subject(s)
Biodegradable Plastics , Composting , Greenhouse Gases , Microbiota , Refuse Disposal , Humans , Composting/methods , Microplastics , Carbon Dioxide , Food , Polyesters/chemistry , Soil/chemistry
4.
Article in English | MEDLINE | ID: mdl-35682198

ABSTRACT

Food waste, as a major part of municipal solid waste, has been increasingly generated worldwide. Efficient and feasible utilization of this waste material for biomanufacturing is crucial to improving economic and environmental sustainability. In the present study, black soldier flies (BSF) larvae were used as carriers to treat and upcycle food waste. Larvae of the BSF were incubated with UV light for 10, 20, and 30 min at a wavelength of 257.3 nm and an intensity of 8 W. The food waste utilization efficiency, antioxidant assays, antibacterial activity, and bioactive metabolites without and with UV treatment were determined and compared. Results showed that the BSF larvae feed utilization rate was around 75.6%, 77.7%, and 71.2% after UV treatment for 10, 20, and 30 min respectively, contrasting with the non-UV induced group (73.7%). In addition, it was perceived that the UV exposure enhanced antioxidant and antimicrobial properties of BSF extracts, and the maximum values were observed after 20 min UV induction time. Moreover, UV-induced BSF extracts showed an improved metabolic profile than the control group, with a change in the amino acids, peptides, organic acids, lipids, organic oxides, and other derivatives. This change in metabolomics profile boosted environmental signaling, degradation of starch, amino acids, sugars, and peptide metabolism. It was concluded that the bioconversion of food wastes using UV-induced BSF larvae can enhance the generation of a variety of functional proteins and bioactive compounds with potent antioxidant and antimicrobial activity. However, more studies are required to exploit the efficiency of UV treatment in improving BSF's potential for upcycling of food wastes.


Subject(s)
Diptera , Refuse Disposal , Waste Management , Amino Acids , Animals , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Diptera/microbiology , Food , Larva , Metabolomics , Solid Waste , Ultraviolet Rays
5.
Article in English | MEDLINE | ID: mdl-35457790

ABSTRACT

The rapid development of biogas plants in China has generated large quantities of digestate. The disparity between the continuity of biogas plant operation and the seasonality of digestate utilization has led to the need to store digestate. Therefore, untargeted profiling of bioactive compounds in the digestate stored under aerobic and anaerobic conditions was performed. The antioxidant and antifungal activity of digestate stored under varying conditions was likewise assessed. The results delineated that digestate storage under varying conditions brought about the degradation of organic acids, alkenes, aldehydes, alcohols, ketones, ethers, amino acids and their derivatives, and esters, leading to the stabilization of digestate components. Together, these new data revealed that digestate storage for up to 20 days under aerobic conditions promotes glycine, serine, and threonine degradation pathways and enhances biotin and vitamins production. In contrast, anaerobic storage enhances the taurine and hypotaurine metabolic pathways and increases the derivation of antimicrobial substances, such as indole alkaloids. Moreover, digestate storage under anaerobic conditions promotes antioxidant and antifungal activity more than storage under aerobic conditions. These findings can contribute to the future development of high-value agricultural products from digestate and the sustainability of biogas plants. Further studies are required for the untargeted metabolomic of digestate under storage to explore the underlying mechanisms of promoting disease resistance by the digestate upon land application.


Subject(s)
Antifungal Agents , Biofuels , Anaerobiosis , Antifungal Agents/pharmacology , Antioxidants/pharmacology , Metabolomics
6.
Sci Rep ; 12(1): 2799, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35181682

ABSTRACT

Food waste is becoming more prevalent, and managing it is one of the most important issues in terms of food safety. In this study, functional proteins and bioactive peptides produced from the enzymatic digestion of black soldier fly (Hermetia illucens L., BSF) fed with food wastes were characterized and quantified using proteomics-based analysis. The results revealed approximately 78 peptides and 57 proteins, including 40S ribosomal protein S4, 60S ribosomal protein L8, ATP synthase subunit alpha, ribosomal protein S3, Histone H2A, NADP-glutamate dehydrogenase, Fumarate hydratase, RNA helicase, Chitin binding Peritrophin-A, Lectin C-type protein, etc. were found in BSF. Furthermore, functional analysis of the proteins revealed that the 60S ribosomal protein L5 (RpL5) in BSF interacted with a variety of ribosomal proteins and played a key role in the glycolytic process (AT14039p). Higher antioxidant activity was found in peptide sequences such as GYGFGGGAGCLSMDTGAHLNR, VVPSANRAMVGIVAGGGRIDKPILK, AGLQFPVGR, GFKDQIQDVFK, and GFKDQIQDVFK. It was concluded that the bioconversion of food wastes by BSF brought about the generation of a variety of functional proteins and bioactive peptides with strong antioxidant activity. However, more studies are required to exploit BSF's potential in the value addition of food wastes.


Subject(s)
Diptera/genetics , Larva/genetics , Peptides/genetics , Proteins/genetics , Animals , Antioxidants/pharmacology , Diptera/metabolism , Food/adverse effects , Food Safety , Larva/metabolism , Proteomics/methods , Refuse Disposal , Solid Waste
SELECTION OF CITATIONS
SEARCH DETAIL
...